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Abstract
The spectrum and the electron density distribution of two, three, and four
electrons confined by a strongly anisotropic oblate-type harmonic oscillator
potential with small values of ω have been studied for all spin states by using
the quantum chemical configuration interaction (CI) method employing large
Cartesian anisotropic Gaussian basis sets. The convergence of the calculated
energy spectrum with respect to different-size basis sets shows that an accuracy
better than 2×10−6 has been obtained for the three-electron harmonic oscillator
quantum dot by using a basis set including up to a k-type function, but that
in order to achieve similar accuracy for the four-electron quantum dot the
basis set has to be supplemented with functions as high as an m-type function.
The analysis of the two leading configurations in the CI wavefunctions shows
that large electron correlation prevails for the low lying states of the systems
studied, particularly for the states with low spin multiplicity. Two types of
electronic mode are identified, namely, the circular mode and the breathing
mode. It is shown that the states having an excitation into the circular mode
are energetically more favourable than those into the breathing mode when the
strength of confinement ω is small.

1. Introduction

Semiconductor technology allows the construction of quantum systems consisting of electrons
confined in potential wells, referred to as artificial atoms [1] or quantum dots [2, 3], as double-
dot artificial molecules or double quantum dots,and as quantum dot molecules [4], respectively.
Organic molecules in confined spaces have recently attracted the interest of many researchers
in the field of chemical physics and physical chemistry. Studies on these host–guest systems
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have been widely recognized as one of the most promising and rapidly emerging research areas
in material and catalytic science [5].

The confinement has been modelled by an external one-particle potential introduced in an
N-electron Schrödinger equation [6, 7]. Among the various forms of one-particle potentials
introduced so far, harmonic oscillator potentials have been used most widely since, in addition
to their simplicity, they can simulate the potential of quantum dots [2] as well as that of an
atom or a molecule in a strong magnetic field [8, 9].

The Schrödinger equation for a single electron confined by a harmonic oscillator potential
was solved in 1928 in closed form [10]. The solution of the Schrödinger equation becomes
significantly more complicated for systems of two interacting electrons in a harmonic oscillator
potential [11, 12], i.e. for two-electron harmonic oscillator quantum dots or parabolic quantum
dots, because of the electron–electron interaction potential. Although in some cases analytical
solutions are available also for confined two-electron systems [13], they are limited to the case
of the spherical harmonic oscillator potential with specific values of ω. Therefore, the spectral
properties of two-electron quantum dots, particularly those for anisotropic harmonic oscillator
potentials [14–17], are still a subject of great interest.

Studies of multi-electron quantum dots require far more effort than those of one- and two-
electron quantum dots. In this case the full configuration interaction (CI) method [18, 19]
that can be used to study the spectral properties of two-electron systems is in general
computationally not feasible since the dimension of the full CI matrix becomes extraordinary
large when the number of interacting electrons exceeds two. Most previous studies on multi-
electron quantum dots were based on either Hartree–Fock calculations [20–22] neglecting
electron correlation completely, or on very limited CI calculations taking into account only a
small part of the electron correlation. On the other hand, it has been recognized that electron
correlation becomes increasingly important when the strength of the confinement becomes
small [23–26]. Therefore, in order to study the energy spectra of multi-electron quantum dots
with small values of ω it is necessary to introduce an efficient computational method that
can be applied to systems with more than two electrons and accounts for electron correlation
properly.

In the present study the spectral properties of multi-electron (N = 2, 3, and 4) harmonic
oscillator quantum dots have been studied for all spin states by using a quantum chemical multi-
reference configuration interaction method [27, 28] permitting us to reduce the size of the CI
matrix significantly while keeping the accuracy sufficiently high. Large Cartesian anisotropic
Gaussian basis sets have been developed in order to reproduce with high numerical accuracy
the degeneracies in the energy spectra that originate from the analytical nature of the harmonic
oscillator quantum dots [29, 30]. The computed spectra have been examined with respect to
the variation of ω. Atomic units are used throughout this paper.

2. Computational methodology

2.1. Schrödinger equation

The Schrödinger equation for N-electrons confined by a potential W is given by (in atomic
units)

[H(r) + W(r)] �(1, 2, . . . , N) = E�(1, 2, . . . , N), (1)

where the set (1, 2, . . . , N) denotes the orbital and the spin coordinates of the electrons. The
operator H represents the N-electron operators describing the kinetic energy and the electron
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interaction potentials:
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where r ≡ {r1, r2, . . . , rN } stands for the spatial coordinates of the electrons. The N-electron
interaction potential is defined as the sum of one-electron contributions:

W(r) =
N∑

i=1

w(ri ). (3)

The one-particle confining potential w(ri ) is chosen to be an anisotropic harmonic oscillator
potential:

w(ri ) = 1
2

[
ω2

x x2
i + ω2

y y2
i + ω2

z z2
i

]
, (4)

where ri = {xi , yi , zi }. It is known that the potential of equation (4) is suitable for modelling
the confining potential of semiconductor quantum dots [2].

The total energies of the confined quantum system have been calculated as the eigenvalues
of the CI matrix. A full CI wavefunction has been used in the case of two-electron quantum
dots while a multi-reference (MR) CI wavefunction has been used in the case of three- and
four-electron quantum dots. All calculations have been performed by using OpenMol [31],
an object-oriented program that originated in the Molecular Physics Group of the Max
Planck Institute for Astrophysics and is being developed in international cooperation amongst
individual researchers primarily for their own use. For the study of confined quantum systems,
OpenMol has been extended to account for power series potentials and anisotropic Gaussian
basis functions. The electron density plots have been generated by using the gOpenMol
program [32].

2.2. Basis set

In a previous study of this series [16] anisotropic Gaussian-type orbitals (aniGTOs) have been
introduced to correctly approximate the wavefunction of electrons confined in an anisotropic
harmonic oscillator potential. Anisotropic Gaussian basis sets have been used also in studies
of atoms in strong magnetic fields [8, 9] and of semiconductor quantum dots [18, 33]. A basis
set of Cartesian anisotropic Gaussian-type orbitals (c-aniGTO) including one function for each
type of orbital has the following general form:

χ c
�a,�ζ (�r) = xax yay zaz exp(−ζx x2 − ζy y2 − ζzz2). (5)

The orbital exponents are chosen to be (ζx, ζy, ζz) = (ωx/2, ωy/2, ωz/2). Following
the quantum chemical convention, these orbitals are classified as s-, p-, d-type, · · · for
a = ax + ay + az = 0, 1, 2, . . ., respectively.

In order to check the reliability of c-aniGTO basis sets for calculating the energy spectra
of strongly anisotropic harmonic oscillator quantum dots the energies of the six lowest
doublet states of three electrons confined by an anisotropic harmonic oscillator potential
with (ωx , ωy, ωz) = (0.01, 0.01, 0.1) have been calculated for different-size basis sets. The
resulting energy spectra are displayed in figure 1 for five different c-aniGTO basis sets. All basis
sets consist of one function for each type of orbital. The smallest normal basis of 56 functions
consists of functions from s- to h-type, described by [1s1p1d1f1g1h]. The term normal applies
to the c-aniGTO basis sets that include all angular functions defined by equation (5), while a
reduced c-aniGTO basis set, which will be introduced later, is a subset of a normal c-aniGTO
basis set. The next larger normal c-aniGTO basis set of 84 functions consists of functions up
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Figure 1. Spectra of the low lying doublet states of three electrons confined by an oblate-
type harmonic oscillator potential with (ωx , ωy, ωz) = (0.01, 0.01, 0.1) for different Cartesian
anisotropic Gaussian basis sets. The numbers in the round brackets represent the total numbers of
basis functions.

to i-type. The normal basis sets of 120 and of 165 functions consist of functions up to j-type
and k-type functions, respectively.

As shown in figure 1 the energy spectra converge with increasing size of the normal c-
aniGTO basis sets. The energy levels calculated using the smallest basis set are displayed at the
far left-hand side of figure 1. They are shifted strongly toward the higher energies indicating
that the smallest basis set of 56 functions is not sufficiently large for calculating the energy
spectra. The CI energies of the lowest 1 2�u state and of the first excited 1 2�g state calculated
by using the next larger basis set of 84 functions agree with those calculated by using the larger
basis sets within 2×10−5, but the agreement becomes significantly worse for the higher lying
states.

It is noted that the basis set of 84 functions including up to i-type functions, described
by [1s1p1d1f1g1h1i], has been explored in previous studies of anisotropic harmonic oscillator
quantum dots and proved in that case to be sufficient for calculating reliable low lying energy
spectra [16, 29, 30]. The present results show that the calculation of reliable energy spectra of
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strongly anisotropic quantum dots requires even higher angular momentum functions in the
basis set. The energies of all states displayed in figure 1 agree with each other within 4×10−5

for the two larger basis sets, that is for the basis sets of 120 functions and of 165 functions. It
is noted, however, that the highest three states 1 2�+

g , 2 2�g, and 1 2�−
g are split slightly for

the basis set of 120 functions while they are degenerate for the larger basis set of 165 functions
within 2×10−6. As will be discussed in a later section, these three states should indeed be
degenerate owing to an analytical property of harmonic oscillator quantum dots [30].

The energy spectrum displayed at the far right-hand side of figure 1, calculated by using
the reduced c-aniGTO basis set of 81 functions, agrees with that calculated by using the largest
normal basis set of 165 functions within 2×10−6. This reduced c-aniGTO basis set is obtained
from the largest normal c-aniGTO basis set of 165 functions by deleting all functions with az

larger than one, that is by deleting all functions with more than one node along the z axis. Since
for the confinement potential in the present case ωz is ten times larger than ωx and ωy , the
orbitals with nodes along the z axis have much larger orbital energies than those without nodes
along the z axis and consequently do not contribute to the energies of the low lying states. This
reduced basis set is further extended up to l-type functions and the resulting reduced c-aniGTO
basis set of 100 functions, described by [1s1p1d1f1g1h1i1j1k1l], is used for the rest of the
calculations in this study.

The CI matrix is constructed by using symmetry-adapted configuration state functions
(CFS) and is block diagonal with respect to a given spin configuration and a given symmetry
species in D2h. The one-particle orbitals used to construct the CSFs are obtained by solving the
closed-shell Hartree–Fock–Roothaan equations for the two-electron quantum dot. The typical
dimension of a block in the CI matrix is between 600 and 700 for the two-electron quantum
dots, between 15 000 and 30 000 for the three-electron quantum dot, and between 100 000 and
200 000 for the four-electron quantum dot.

3. Results and discussion

3.1. Energy spectra and electron density distributions

3.1.1. Hartree–Fock orbitals. The closed-shell Hartree–Fock orbital energies and density
distributions for two electrons confined by an anisotropic harmonic oscillator potential with
(ωx , ωy, ωz) = (0.01, 0.01, 0.1) have been calculated and are displayed in figure 2. The
density distribution is displayed in cubes with a side length of 48 au. The z axis is directed
along the vertical edge of the cube. The density at the surface is 5.0 × 10−5. The orbitals have
been assigned by using the notation [vx + vy, vz]�, defined in a previous study [16], where
vx , vy , and vz denote one-electron harmonic oscillator quantum numbers for the x , y, and z
coordinates, respectively, and � denotes the symmetry labels of the D∞,h group. Owing to the
axial symmetry of the confining potential the z component of the angular momentum quantum
number, lz , is conserved. It is related to the vz and vy quantum numbers by lz = vx − vy [34].

The low lying orbitals displayed in figure 2 do not have a nodal plane along the z axis.
Their vz quantum number is zero. This is consistent with the result of the previous section
demonstrating that the energy spectrum calculated using the reduced c-aniGTO basis set of 81
functions is almost identical for the low lying states to that calculated using the corresponding
normal c-aniGTO basis set of 165 functions. It is interesting to compare the energy level
sequence of the one-electron harmonic oscillator quantum dot to the Hartree–Fock orbital
energy sequence displayed in figure 2 for the same confining potential. In the case of the
one-electron quantum dot a set of levels belonging to the same [vx + vy, vz] manifold have
the same energy. For example, the two levels [2, 0]δg and [2, 0]σg in the [2, 0] manifold, the
two levels [3, 0]φu and [3, 0]πu in the [3, 0] manifold, and the three levels [4, 0]γg, [4, 0]δg,
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Figure 2. The closed-shell Hartree–Fock orbital density distribution for two electrons confined by
an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) = (0.01, 0.01, 0.1). The density at
the surface is 5.0 × 10−5.

and [4, 0]σg in the [4, 0] manifold, etc, are degenerate within their respective manifolds. On
the other hand, in the case of the Hartree–Fock orbitals the set of levels belonging to the same
[vx +vy, vz ] manifold are not degenerate but are split as shown in figure 2. This is attributed to a
large contribution to the energy from the electron–electron interaction which strongly changes
the shell structure determined by the harmonic oscillator potential.

Two types of electron mode can be identified from the nodal patterns of the Hartree–
Fock orbitals displayed in figure 2 representing the bound motion of electrons analogous to
vibrational modes in molecular vibrational spectroscopy, namely: the circular mode with
angular nodal planes dividing the orbitals through the centre parallel to the z axis, and the
breathing mode with radial nodal planes dividing the orbitals with respect to the centre. The
number of angular nodal planes specifies the orbital angular momentum and is equal to the |lz|
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Table 1. The CI energy (in au) of the six lowest singlet and triplet states of two electrons confined
by an oblate-type harmonic oscillator potential with (ωx , ωy , ωz) = (0.01, 0.01, 0.1).

Singlet Triplet

1 1�+
g 0.173 506

1 3�u 0.174 987
1 1�g 0.178 953
1 1�u 0.183 506

1 3u 0.184 602
1 3�−

g 0.184 987

1 3�g 0.184 987
1 3�+

g 0.184 987

2 1�u 0.188 953
1 1u 0.188 953
2 1�+

g 0.191 057

2 3�u 0.192 769

value while the number of radial nodal planes is equal to the vx + vy − |lz| value. The circular
mode may be interpreted classically as corresponding to a circular motion of the electron
around the symmetry axis of the confining potential and the breathing mode as a radial motion
of the electron.

It is noted that within each [vx +vy, vz] manifold, orbitals with larger |lz| quantum numbers
have lower orbital energies. For example, within the [2, 0] manifold the δg orbital has a lower
energy than the σg orbital and within the [3, 0] manifold the φu orbital has a lower energy than
the πu orbital and so on. This trend of the Hartree–Fock orbital energy sequence indicates that
the circular mode is energetically preferable to the breathing mode.

3.1.2. The two-electron quantum dot. The energy spectra and the electron density
distributions of the six lowest singlet states and of the six lowest triplet states of two electrons
confined by an oblate-type harmonic oscillator potential with (ωx, ωy, ωz) = (0.01, 0.01, 0.10)

are displayed in figures 3 and 4, respectively. The CI energies are listed in table 1 in increasing
order. The electron density distributions are displayed in the same way as for the Hartree–Fock
orbitals except that the density at the surface is 1.0 × 10−4. The lowest state in the singlet
manifold is 1 1�+

g as expected from the Hartree–Fock orbitals displayed in figure 2. However,
the first and the second excited states in the singlet manifold are 1 1�g and 1 1�u, respectively.
This order differs from that of the Hartree–Fock orbital sequence. A reversed order of states
as compared to the Hartree–Fock orbital sequence is observed also in the triplet manifold. The
lowest triplet state is 1 3�u as expected, but the first excited state is not 1 3�g but 1 3u.
The reversed order of states as compared to the one-electron Hartree–Fock orbital sequence
indicates that even the lowest excited states cannot be described by a simple one-electron
excitation from the ground state configuration, as is possible for conventional two-electron
atoms like He.

Another interesting observation concerns the degeneracy of states. From figures 3 and 4
it is evident that the two states 2 1�u and 1 1u in the singlet manifold, and the three states
1 3�+

g , 1 3�−
g and 1 3�g in the triplet manifold are degenerate. This degeneracy is not

accidental but a direct consequence of the analytical properties of harmonic oscillator quantum
dots. As known from the generalization of Kohn’s theorem [35–38] the excitation energy in
dipole-allowed transitions is identical to the fundamental frequency of the harmonic oscillator
confining potential. In the present case transitions to the 2 1�u and the 1 1u state are dipole
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Figure 3. The CI energy and electron density distribution of the six lowest singlet states of
two electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy , ωz) =
(0.01, 0.01, 0.1). The density at the surface is 1.0 × 10−4.

allowed from the 1 1�g state, and transitions to the 1 3�+
g , the 1 3�−

g and the 1 3�g state are
the dipole allowed from the 1 3�u state.

The CI energies listed in table 1 confirm these results. The CI energies of the 2 1�u and
the 1 1u states are identical within 1.0 × 10−6 and the energy of excitation to these states
from the 1 1�g state is equal to the smaller of the harmonic frequencies, ωx (=ωy), of 0.01
within 1.0 × 10−6. The situation is similar for the triplet manifold. The CI energies of the
three states 1 3�+

g , 1 3�−
g , and 1 3�g are identical and the energy of excitation to these states

from the 1 3�u state is equal to 0.01 within 1.0 × 10−6. It can be seen from table 1 that the
energy of excitation to the 1 1�u state from the 1 1�+

g state is also equal to 0.01. All these
transitions are dipole allowed. It is noted that the correct degeneracy and the accuracy of the
excitation energies are strongly dependent on the quality of the basis set. This means in turn
that these properties can be used to check the quality of the calculations.
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Figure 4. The CI energy and electron density distribution of the six lowest triplet states of
two electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy , ωz) =
(0.01, 0.01, 0.1). The density at the surface is 1.0×10−4.

The two leading configurations and their contributions to the CI wavefunction are listed
in tables 2 and 3 for the six lowest singlet and the six lowest triplet states, respectively. The
leading configuration of the 1 1�+

g ground state is the Hartree–Fock ground state ([0, 0]σg)
2

as expected from the Hartree–Fock orbital diagram displayed in figure 2. But even for this
Hartree–Fock ground state the square norm is only 0.582. That means it contributes less
than 60% to the 1 1�+

g state. This indicates a large electron correlation effect in harmonic
oscillator quantum dots [16]. The leading configuration of the first excited 1 1�g state is
([0, 0]σg)([2, 0]δg), a single excitation from the ground state configuration ([0, 0]σg)

2 with a
square norm as small as 0.276. On the other hand, the second-leading configuration ([1, 0]πu)

2

is a double excitation from the ground state and makes a contribution to the 1 1�g state similar
to the first-leading configuration. This indicates that multiple excitations play important roles
for these low lying states.
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Table 2. The two leading configurations and their squared norms for the six lowest singlet states
of two electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy , ωz) =
(0.01, 0.01, 0.1).

State Config. 1 Norm 1 Config. 2 Norm 2

1 1�+
g ([0, 0]σg)

2 0.582 ([1, 0]πu)
2 0.153

1 1�g ([0, 0]σg)([2, 0]δg) 0.276 ([1, 0]πu)
2 0.230

1 1�u ([0, 0]σg)([1, 0]πu) 0.415 ([1, 0]πu)([2, 0]δg) 0.126
2 1�u ([1, 0]πu)([2, 0]σg) 0.174 ([0, 0]σg)([3, 0]πu) 0.135
1 1u ([0, 0]σg)([3, 0]φu) 0.395 ([0, 0]σg)([5, 0]φu) 0.172
2 1�+

g ([0, 0]σg)([2, 0]σg) 0.305 ([1, 0]πu)
2 0.229

Table 3. The two leading configurations and their squared norms for the six lowest triplet states
of two electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy , ωz) =
(0.01, 0.01, 0.1).

State Config. 1 Norm 1 Config. 2 Norm 2

1 3�u ([0, 0]σg)([1, 0]πu) 0.621 ([0, 0]σg)([3, 0]πu) 0.171
1 3u ([1, 0]πu)([2, 0]δg) 0.282 ([1, 0]πu)([4, 0]δg) 0.170
1 3�−

g ([1, 0]πu)([1, 0]πu) 0.430 ([1, 0]πu)([3, 0]πu) 0.238

1 3�g ([0, 0]σg)([2, 0]δg) 0.505 ([0, 0]σg)([4, 0]δg) 0.152
1 3�+

g ([0, 0]σg)([2, 0]σg) 0.463 ([0, 0]σg)([4, 0]σg) 0.285

2 3�u ([1, 0]πu)([2, 0]σg) 0.161 ([1, 0]πu)([2, 0]δg) 0.146

In the case of the triplet manifold the leading configuration of the lowest 1 3�u state is
([0, 0]σg)([1, 0]πu) as expected from the Hartree–Fock orbital diagram displayed in figure 2.
It is noted that in this case the square norm of the leading configuration of 0.621 is larger
than that of the leading Hartree–Fock ground state configuration ([0, 0]σg)

2 in the 1 1�+
g

ground state of 0.582. It is interesting to compare the contributions of the ([0, 0]σg)([1, 0]πu)

configuration to this triplet 1 3�u state and to the corresponding singlet 1 1�u state. Although
the two states have the same primary configuration of ([0, 0]σg)([1, 0]πu), the square norm
of this contribution in the triplet state of 0.621 is much larger than that in the singlet state
of 0.415. This indicates that the electron correlation is smaller in the triplet state than in the
singlet state [39]. A similar trend can be observed in the 1 3�+

g and 2 1�+
g states. The leading

configuration ([0, 0]σg)([2, 0]σg) has a contribution of 0.463 in the triplet state and 0.305 in
the singlet state.

It is interesting to compare the electron density distribution of the singlet–triplet pairs
of states. In the case of the 1 1�u–1 3�u pair the electron density distributions for both
states, displayed in figures 3 and 4, have a twofold symmetry with respect to the z axis
indicating π symmetry. On the other hand, the electron density distribution of the triplet
1 3�u state displayed in figure 4 has a node in the middle while that of the singlet 1 1�u

state shown in figure 3 has no node on the surface. By referring to the shape of the Hartree–
Fock orbitals displayed in figure 2, it can be seen that the node on the surface of the electron
density distribution of the 1 3�u state originates from the node of the [1, 0]πu orbital. This
interpretation is consistent with the analysis of the CI wavefunctions. It shows that the
1 3�u state has a larger contribution from the ([0, 0]σg)([1, 0]πu) configuration than from
the 1 1�u state. The larger configuration mixing in the singlet state may in addition blur
the nodal pattern. The situation is similar for the 1 3�+

g –2 1�+
g pair. The electron density

distribution of the 2 1�+
g state is a simple disc while that of the 1 3�+

g has an outer ring that is
characteristic of the nodal pattern in the [2, 0]σg orbital displayed in figure 2.
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Figure 5. The CI energy and electron density distribution of the six lowest doublet states of
three electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy , ωz) =
(0.01, 0.01, 0.1). The density at the surface is 1.0 × 10−4.

3.1.3. The three-electron quantum dot. The energy spectra and the electron density
distributions of the six lowest doublet states and of the six lowest quartet states of three electrons
confined by an oblate-type harmonic oscillator potential with (ωx, ωy, ωz) = (0.01, 0.01, 0.10)

are displayed in figures 5 and 6, respectively. The CI energies are listed in table 4 in increasing
order. The electron density distributions are displayed in the same way as for the two-electron
quantum dots.

On inspection of the energies displayed in table 4, it is noted that the ground state of the
three-electron quantum dot is not the doublet 1 2�u state but the quartet 1 4�−

g state which
is contrary to what is expected from the Hartree–Fock orbital sequence. This contradiction
is a clear manifestation of the fact that the energy stabilization originating from the exchange
interaction is large enough to excite one electron from the lowest [0, 0]σg orbital to the next
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Figure 6. The CI energy and electron density distribution of the six lowest quartet states of
three electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy , ωz) =
(0.01, 0.01, 0.1). The density at the surface is 1.0 × 10−4.

higher [1, 0]πu orbital. When the energy gap between these two orbitals becomes large to
the extent that the energy gap is larger than the stabilization energy, the doublet 1 2�u state
becomes the ground state.

As demonstrated for the two-electron quantum dot, the dipole-allowed states can be easily
identified from the CI energies listed in table 4. In the doublet manifold the energy of excitation
from the lowest 1 2�u state to the triply degenerate states 1 2�g, 1 2�+

g , and 1 2�−
g is equal to the

confinement strength, ωx (=ωy), of 0.01 within 1.0 × 10−6 indicating that the corresponding
transitions are dipole allowed. In the quartet manifold the energy of excitation from the ground
1 4�−

g state to the 1 4πu state and the energy of excitation from the 1 4u state to the 2 4�g state
are equal to 0.01. This indicates again that the corresponding transitions are dipole allowed. It
is noted that the unlisted seventh-lowest state in the quartet manifold, 1 4�g, forms a degenerate
pair with the 2 4�g state with a dipole-allowed transition from the 1 1u.
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Table 4. The CI energy (in au) of the six lowest doublet and quartet states of three electrons
confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) = (0.01, 0.01, 0.1).

Doublet Quartet

1 4�−
g 0.325 237

1 2�u 0.325 647
1 2�g 0.327 178

1 4u 0.329 597
1 2�g 0.333 007

1 4�u 0.335 237
1 2�g 0.335 647
1 2�+

g 0.335 647

1 2�−
g 0.335 647

2 4�u 0.337 123
1 4�g 0.337 699
2 4�g 0.339 597

The leading and the second-leading configuration and their square norms in the CI
wavefunctions are listed for the six lowest doublet and quartet states in tables 5 and 6,
respectively. It can be seen from these tables that the norm of the first-leading configuration in
the quartet manifold tends to be larger than in the doublet manifold, as has been observed for
the low lying singlet–triplet pairs of states of the two-electron quantum dot. This result can
be most clearly seen in the present case for the 1 2�−

g –1 4�−
g pair. The leading configuration

([0, 0]σg)([1, 0]πu)([1, 0]πu) makes a contribution of 0.246 in the 1 2�−
g state but makes a

contribution as large as 0.633 in the 1 4�−
g state. This indicates that the electron correlation

has a much smaller effect in the quartet state than in the doublet state.
The electron density distributions of the two states of this doublet–quartet pair displayed

in figures 5 and 6 are distinctly different. The electron density distribution of the 1 4�−
g state

has the form of a ring, while that of the 1 2�−
g state is a disc with a very small hole at the centre.

As the electron density distributions are displayed as surfaces for a specific value of density, the
absence of the surface in some region does not mean necessarily that the density in that region
is exactly zero: it may have any value smaller than the value of the plotted electron density
surface. The reason for the larger area of low density in the electron density distribution of
the 1 4�−

g state as compared to the 1 2�−
g state may be rationalized by inspecting the leading

configurations in the corresponding CI wavefunctions. As shown in tables 5 and 6, the 1 4�−
g

state is dominated by the ([0, 0]σg)([1, 0]πu)([1, 0]πu) configuration, while the 1 2�−
g state

has only a contribution of 25% from this configuration. Since the [1, 0]πu orbital has a node
in the middle of the density distribution, the electron density distribution of the 1 4�−

g state
has a lower density in the central region. On the other hand, in the case of the 1 2�−

g state a
larger contribution from different configurations fills the central region.

3.1.4. The four-electron quantum dot. The energy spectra and the electron density
distributions of the six lowest singlet states, the six lowest triplet states, and the six lowest
quintet states of four electrons confined by an oblate-type harmonic oscillator potential with
(ωx , ωy, ωz) = (0.01, 0.01, 0.10) are displayed in figures 7, 8, and 9, respectively. The CI
energies are listed in table 7 in increasing order. The electron density distributions are displayed
in the same way as for the two- and three-electron quantum dots.

As shown in table 7, the electronic ground state is the triplet 1 3�−
g state and the first

excited state is the lowest singlet 1 1�+
g state. The lowest quintet state is the fourth excited
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Table 5. The two leading configurations and their squared norms for the six lowest doublet states
of three electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1).

State Config. 1 Norm 1 Config. 2 Norm 2

1 2�u ([0, 0]σg)
2([1, 0]πu) 0.331 ([0, 0]σg)([1, 0]πu)([2, 0]δg) 0.159

1 2�g ([0, 0]σg)([1, 0]πu)([1, 0]πu) 0.297 ([0, 0]σg)
2([2, 0]δg) 0.167

1 2�g ([0, 0]σg)([1, 0]πu)([3, 0]φu) 0.126 ([0, 0]σg)([2, 0]δg)([2, 0]δg) 0.124
1 2�g ([0, 0]σg)

2([2, 0]δg) 0.173 ([0, 0]σg)([1, 0]πu)([3, 0]φu) 0.143
1 2�+

g ([0, 0]σg)
2([2, 0]σg) 0.176 ([0, 0]σg)([2, 0]δg)

2 0.168

1 2�−
g ([0, 0]σg)([1, 0]πu)([1, 0]πu) 0.246 ([0, 0]σg)([1, 0]πu)([3, 0]πu) 0.111

Table 6. The two leading configurations and their squared norms for the six lowest quartet states
of three electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1).

State Config. 1 Norm 1 Config. 2 Norm 2

1 4�−
g ([0, 0]σg)([1, 0]πu)([1, 0]πu) 0.633 ([0, 0]σg)([1, 0]πu)([3, 0]πu) 0.106

1 4u ([0, 0]σg)([1, 0]πu)([2, 0]δg) 0.535 ([0, 0]σg)([1, 0]πu)([4, 0]δg) 0.122
1 4�u ([0, 0]σg)([1, 0]πu)([2, 0]δg) 0.321 ([0, 0]σg)([1, 0]πu)([2, 0]σg) 0.164
2 4�u ([0, 0]σg)([1, 0]πu)([2, 0]σg) 0.360 ([0, 0]σg)([1, 0]πu)([2, 0]δg) 0.194
1 4�g ([1, 0]πu)([1, 0]πu)([2, 0]δg) 0.222 ([0, 0]σg)([1, 0]πu)([3, 0]φu) 0.213
2 4�g ([0, 0]σg)([1, 0]πu)([3, 0]πu) 0.161 ([0, 0]σg)([2, 0]δg)([2, 0]σg) 0.139

Table 7. The CI energy (in au) of the six lowest singlet, triplet, and quintet states of four electrons
confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) = (0.01, 0.01, 0.1).

Singlet Triplet Quintet

1 3�−
g 0.513 018

1 1�+
g 0.513 153

1 3�u 0.513 417
1 1�g 0.514 024

1 5�g 0.514 251
1 3u 0.515 467

1 1�g 0.517 268
1 3�g 0.517 312
1 3Hu 0.519 609

1 5�−
g 0.520 449

2 3�u 0.520 959
1 1�u 0.521 764
1 1�−

g 0.521 900

2 1�g 0.522 075
1 5Ig 0.522 337
1 5�u 0.524 267
1 5u 0.524 269
2 5�u 0.524 383

electronic state. It has a slightly higher energy than the lowest singlet and triplet states. It
is also seen from this table that there is no dipole-allowed excited state within the six lowest
singlet and triplet states. The only dipole-allowed states are the 1 5�u and 1 5u states in the
quintet manifold. They are dipole allowed from the lowest 1 5�g state.

It is noted that the energies, 0.010 016 and 0.010 018, calculated for the two transitions
1 5�u–1 5�g and 1 5u–1 5�g agree with the analytical value 0.01 within an absolute error
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Figure 7. The CI energy and electron density distribution of the six lowest singlet states of
four electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1). The density at the surface is 1.0×10−4.

2 × 10−5. This is significantly larger than the typical error of 1×10−6 for the computed
transition energies of the two- and three-electron quantum dots. It is shown that this relatively
large error for the transition energies of the four-electron quantum dot cannot be made
smaller by increasing the number of configurations in the CI wavefunctions, but only by
improving the basis set. On adding an m-type function to the reduced c-aniGTO basis set of
[1s1p1d1f1g1h1i1j1k1l] the energies for the three states 1 5�g, 1 5�u, and 1 5u become
0.514 250, 0.524 254, and 0.524 255, respectively. The corresponding transition energies
become 0.010 004 and 0.010 005, with an absolute error less than 5×10−6. This and the
previous results of the basis set study in section 2.2 suggest that the basis set needs to be
supplemented with higher angular momentum functions as the number of electrons increases.

The two leading configurations of the CI wavefunction and their square norms are listed
in tables 8, 9, and 10, respectively, for the six lowest singlet, triplet, and quintet states.
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Figure 8. The CI energy and electron density distribution of the six lowest triplet states of
four electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1). The density at the surface is 1.0×10−4.

From tables 8 and 9 it is seen that the largest square norm for the leading configuration in
the singlet and in the triplet manifold is 0.194 and 0.226, respectively. This indicates that
the CI wavefunctions for these low lying singlet and triplet states are dominated by strong
configuration mixing. It may be argued that this apparently large configuration mixing is due
to the fact that the closed-shell Hartree–Fock orbitals of the two-electron quantum dot are
used in the calculation for the four-electron quantum dot. It is noted, however, that the three
lowest states in the quintet manifold, 1 5�g, 1 5�u, and 1 5u, have leading configurations
with square norms, 0.568, 0.561, and 0.516, respectively, of a magnitude comparable to that of
the leading configuration of the Hartree–Fock ground 1 1�+

g ground state of the two-electron
quantum dot. This result, again, shows that the states with higher spin multiplicity tend to have
a smaller configuration mixing than those with lower spin multiplicity as observed already for
the two- and three-electron quantum dots.
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Figure 9. The CI energy and electron density distribution of the six lowest quintet states of
four electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1). The density at the surface is 1.0 × 10−4.

Table 8. The two leading configurations and their squared norms for the six lowest singlet states
of four electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1).

State Config. 1 Norm 1 Config. 2 Norm 2

1 1�+
g ([1, 0]πu)

2([1, 0]πu)
2 0.194 ([0, 0]σg)

2([1, 0]πu)
2 0.125

1 1�g ([0, 0]σg)
2([1, 0]πu)

2 0.194 ([0, 0]σg)([1, 0]πu)([1, 0]πu)([2, 0]δg) 0.099
1 1�g ([1, 0]πu)([1, 0]πu)

2([3, 0]φu) 0.147 ([0, 0]σg)
2([2, 0]δg)

2 0.146
1 1�u ([0, 0]σg)

2([1, 0]πu)([2, 0]δg) 0.188 ([0, 0]σg)([1, 0]πu)
2([1, 0]πu) 0.095

1 1�−
g ([0, 0]σg)

2([1, 0]πu)([3, 0]πu) 0.135 ([0, 0]σg)([1, 0]πu)([1, 0]πu)([2, 0]σg) 0.060

2 1�g ([0, 0]σg)
2([2, 0]δg)([2, 0]σg) 0.150 ([1, 0]πu)([1, 0]πu)

2([3, 0]πu) 0.078

On inspecting figures 7–9 it is further observed that the low lying energy spectra of the
four-electron quantum dot contain states of very high total angular momentum,namely, 1 1�g in
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Figure 10. Normalized excitation energy spectra of four electrons confined by an oblate-type
harmonic oscillator potential with (ωx , ωy, ωz) = (ω,ω, 10 × ω) for different ω.

Table 9. The two leading configurations and their squared norms for the six lowest triplet states
of four electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1).

State Config. 1 Norm 1 Config. 2 Norm 2

1 3�−
g ([0, 0]σg)

2([1, 0]πu)([1, 0]πu) 0.226 ([0, 0]σg)([1, 0]πu)
2([2, 0]δg) 0.103

1 3�u ([0, 0]σg)([1, 0]πu)([1, 0]πu)
2 0.228 ([0, 0]σg)

2([1, 0]πu)([2, 0]δg) 0.126
1 3u ([0, 0]σg)

2([1, 0]πu)([2, 0]δg) 0.200 ([1, 0]πu)
2([1, 0]πu)([2, 0]δg) 0.143

1 3�g ([0, 0]σg)([1, 0]πu)
2([2, 0]δg) 0.119 ([0, 0]σg)

2([1, 0]πu)([3, 0]φu) 0.096
1 3Hu ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]δg) 0.096 ([0, 0]σg)([1, 0]πu)([2, 0]δg)

2 0.096
2 3�u ([0, 0]σg)

2([1, 0]πu)([2, 0]σg) 0.158 ([0, 0]σg)([1, 0]πu)([1, 0]πu)([2, 0]σg) 0.080

the singlet manifold, 1 3�g and 1 3Hu in the triplet manifold, and 1 5Ig in the quintet manifold.
This energy level structure of the low lying states of the four-electron quantum dot is very
different from that of the conventional few-electron atoms where the low lying energy spectra
contain only low angular momentum states, such as S, P, D.
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Table 10. The two leading configurations and their squared norms for the six lowest quintet states
of four electrons confined by an oblate-type harmonic oscillator potential with (ωx , ωy, ωz) =
(0.01, 0.01, 0.1).

State Config. 1 Norm 1 Config. 2 Norm 2

1 5�g ([0, 0]σg)([1, 0]πu)([1, 0]πu)([2, 0]δg) 0.568 ([0, 0]σg)([1, 0]πu)([2, 0]δg)([3, 0]φu) 0.090
1 5�−

g ([0, 0]σg)([1, 0]πu)([1, 0]πu)([2, 0]σg) 0.561 ([0, 0]σg)([1, 0]πu)([2, 0]δg)([3, 0]πu) 0.095

1 5 I g ([0, 0]σg)([1, 0]πu)([2, 0]δg)([3, 0]φu) 0.516 ([1, 0]πu)([1, 0]πu)([2, 0]δg)([4, 0]γg) 0.096
1 5�u ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]δg) 0.220 ([0, 0]σg)([1, 0]πu)([1, 0]πu)([3, 0]πu) 0.115
1 5u ([0, 0]σg)([1, 0]πu)([1, 0]πu)([3, 0]φu) 0.334 ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]σg) 0.125
2 5�u ([0, 0]σg)([1, 0]πu)([2, 0]δg)([2, 0]δg) 0.215 ([0, 0]σg)([1, 0]πu)([1, 0]πu)([3, 0]πu) 0.130

In order to understand the origin of these low lying high angular momentum states, the
normalized excitation energy, defined as the excitation energy from the ground 1 3�−

g state
divided by the strength of the confinement ω (=ωx = ωy), is plotted in figure 10 for all spin
multiplets of S = 0, 1, 2. This figure shows that the normalized excitation energy for all high
angular momentum states, particularly for the 1 1Ig, 1 3Hu, and 1 5Ig states, increases very
rapidly as ω increases. This indicates that these high angular momentum states are located
in the high energy region when ω is large. It shows that the appearance of the high angular
momentum states in the low lying energy spectrum is a consequence of the small confinement
strength ω. It is noted further that these high angular momentum states cannot be described in
terms of a single-electron excitation from the ground state configuration, but only in terms of a
multi-electron excitation to circular modes. For example, the leading configuration of the 1 5Ig

state is composed of the four orbitals ([0, 0]σg), ([1, 0]πu), ([2, 0]δg), and ([3, 0]φu). Their
angular momenta properly added give rise to, among others, the large angular momentum
of L = 6. Since circular modes correspond to classical circular motions of an electron, the
multi-electron excitations in the 1 5Ig state correspond to a coherent circular motion of the four
electrons, that is, all electrons move circularly in the same direction.

The appearance of the high angular momentum states in the low lying energy spectra
may be interpreted as follows: the relative importance of the electron repulsion potential for
the total energy becomes larger as ω becomes smaller and consequently all electrons begin to
move in the same direction in order to keep apart from each other.

4. Summary

The spectrum and the electron density distribution for two, three, and four electrons confined
by a strongly anisotropic oblate-type harmonic oscillator potential with small values of ω

have been studied for all spin states by using the quantum chemical configuration interaction
method employing large Cartesian anisotropic Gaussian basis sets. The convergence of the
computed energy spectrum with respect to the size of the basis sets has been examined by
checking the degeneracy in the energy spectrum. It is shown that an accuracy of better than
2 × 10−6 has been obtained for the two- and three-electron quantum dots by using basis sets
including up to a k-type function, but that in order to achieve similar accuracy for the four-
electron quantum dot the basis set has to be supplemented with functions as high as an m-type
function. The analysis of the leading configurations in the CI wavefunctions shows that large
electron correlation prevails for the low lying states of the systems studied, particularly for
the states with a lower spin multiplicity. From the shape of the Hartree–Fock orbital density
distributions, two types of characteristic electronic modes are identified, namely, the circular
mode and the breathing mode. It is shown that the states having an excitation to the circular
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mode are energetically more favourable than the states having an excitation to the breathing
mode when the strength of the confinement ω is small.
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